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A B S T R A C T   

This study proposed a novel double machine learning (DML) approach to merge multiple satellite-based pre
cipitation products (SPPs) and gauge observations, and tested its reliability and validity over the Chinese 
mainland. The DML approach was mainly developed based on the classification model of random forest (RF) in 
combination with the regression models of the machine learning (ML) algorithms including RF, artificial neural 
network (ANN), support vector machine (SVM) and extreme learning machine (ELM). This led to four DML 
algorithms, i.e., RF-RF, RF-ANN, RF-SVM, and RF-LM. The performance of the DML algorithms were compared to 
the single machine learning (SML) algorithms developed based solely on the regression models of RF, ANN, SVM, 
and ELM, and to the liner merging methods including the inverse error variance weighting, the one-outlier- 
removed average, and the optimized weight average. In total, we produced twelve precipitation products 
including four of the DML algorithms, four of the SML algorithms, three of the liner merging methods, and 
another one generated via the gauge-only interpolation. The precipitation observations at 697 gauges were 
spatially and randomly divided into two parts (i.e., 70% and 30%), one was used for the training of the ML 
algorithms or for the interpolation, while the other for the performance evaluations. Results indicate that the 
DML algorithms outperform the other merging methods, the gauge-only interpolation, and the original SPPs over 
the Chinese mainland. The median Kling-Gupta efficiency (KGE) ranges 0.67–0.71 for the merged products of 
DML, which are obviously higher than the original SPPs (0.31–0.54), the linear merged product (0.54–0.55), 
gauge-only interpolated product (0.62), and the SML-based products (0.47–0.65). The DML-based products also 
exhibit better performances than the other products in detecting precipitation events with the threshold of 1 
mm/day, and outperform the original SPPs regardless of the precipitation thresholds. Further analyses imply 
that: (i) the DML-based products could outperform the original SPPs even with a small training dataset size; (ii) 
the superiority of the DML approach to SML is mainly due to that the former can better capture the temporal 
dynamics of precipitation; (iii) the added values of the merged products of DML relative to the original SPPs and 
the gauge-only product vary with the sizes of the training dataset; and (iv) the ensemble of the DML algorithms 
could not further improve the accuracy of the precipitation estimates. This study not only provided an effective 
and robust tool for the fusion of multiple SPPs and gauge observations, but also, for the first time, compared the 
performance of various ML algorithms in merging satellite and gauge-based precipitation.   

1. Introduction 

Precipitation is one of the key components in the hydrological and 
atmospheric cycles. It is essential not only to the understanding of water 

balance and climate variability (Markonis et al., 2019; Du et al., 2020), 
but also to a wide range of applications such as flood forecasting 
(Breugem et al., 2020), drought monitoring (Zhong et al., 2019), water 
resource managements (Brodeur and Steinschneider, 2020), and 
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hydrological and earth system modeling (Tesfa et al., 2020; Zhang et al., 
2020b). However, it is very challenging to obtain high-quality precipi
tation estimates at fine spatial–temporal resolutions (Xie and Xiong, 
2011). Rain gauges are the traditional and reliable tools used to measure 
point-scale precipitation, which typically serve as the benchmark for the 
evaluation of various precipitation products. However, they are scarcely 
and unevenly distributed in most regions of the world (Sharifi et al., 
2019; Beck et al., 2020); and the spatial continuous precipitation esti
mates based solely on gauge-based observations are subjected to large 
uncertainties (Baez-Villanueva-test et al., 2020). 

Over the last few decades, the rapid development of remote sensing 
techniques provides an unprecedented opportunity for estimating 
spatial continuous precipitation at the global scale. Satellite-based pre
cipitation products (SPPs) are increasingly available to the public, which 
significantly improved our understanding of the precipitation charac
teristics (Chen and Gao, 2018; Gupta et al., 2019; Markonis et al., 2019), 
and promoted a variety of hydrometeorological applications (Munier 
et al., 2014; Belabid et al., 2019; Pellet et al., 2019), especially over the 
gauge-sparse regions. Nevertheless, the SPPs are inherently subjected to 
large uncertainties and biases arising from the retrieval algorithms, the 
indirect measurements, and the deficiencies of the sensors (e.g., the false 
precipitation detections by infrared sensors if cold nonprecipitating 
clouds exist, and the undervalue of localized storm events by microwave 
sensors) (Bharti and Singh, 2015; Ebrahimi et al., 2017). They typically 
have trouble in estimating heavy and solid rainfall (Xu et al., 2017) as 
well as the local orographic precipitation (Bharti and Singh, 2015). 

The gauge-based precipitation observations have high accuracy, but 
with limited coverages and uneven distributions. On the other hand, the 
SPPs have continuous and large coverages but with large biases. Hence, 
in recent years, many efforts have been made to merge SPPs and gauge 
observations to improve the accuracy and spatial coverage of the pre
cipitation estimates (Nie et al., 2015; Yang et al., 2017; Chen et al., 
2018; Beck et al., 2019; Baez-Villanueva et al., 2020; Xu et al., 2020). A 
variety of methods have been proposed to merge satellite and gauge- 
based precipitation, including (i) the simplest linear merging methods, 
e.g., the one-outlier-removed average (Shen et al., 2014), the inverse 
error variance weighting (Mastrantonas et al., 2019) and the inverse- 
root-mean-square-error weighting (Yang et al., 2017), (ii) the bias 
correction or residual-based methods, e.g., the probability-mapping 
method (Zhang and Tang, 2015), the geographical difference/ratio 
analysis (Duan and Bastiaanssen, 2013; Bai et al., 2019) and the kernel 
smoothing (Li and Shao, 2010), (iii) the intermediate-complexity ap
proaches, e.g., the geographically weighted regression (GWR) (Chao 
et al., 2018) and the optimal interpolation technique (Xie and Xiong, 
2011; Nie et al., 2015), and (iv) some other more complex methods such 
as the Bayesian model averaging (BMA) scheme (Ma et al., 2018; Rah
man et al., 2020) and the Kriging-based algorithms (Manz et al., 2016; 
Chen et al., 2020a). These merging methods have proved to be effective 
in improving the accuracy of precipitation estimates. Nevertheless, most 
of them are subjected to strong (ad hoc) assumptions that may not hold 
true in reality (Wu et al., 2020). More specifically, (i) the linear average 
method assumes a linear relationship between the output and the 
merging members; (ii) the optimal interpolation technique assumes a 
sole dependence of the error variance on precipitation intensity; (iii) the 
geographically weighted regression method hypothesizes a non-linear 
correlation between the dependent variables; (iv) the bias correction 
method assumes an unbiased estimation of the precipitation background 
field by the SPPs; and (v) the BMA and Kriging-based methods assume a 
normal (Gaussian) distribution of precipitation. Moreover, many of the 
methods are applicable to blending gauge-based observations with only 
one single SPP. As we know, each SPP could have its own pros and cons, 
and might show varying performance for different regions and time
scales. For instance, Zhang et al. (2020a) found that the Integrated 
Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) 
Early Run product outperforms the SM2RAIN-ASCAT product in the 
humid subregions of China, while the contrary is the case in the semi- 

arid subregions. The fusion of gauge-based observations with multiple 
SPPs, instead of one single SPP, might be more favorable for the 
improvement of the precipitation estimates (Chen et al., 2020b). Lastly, 
to our best knowledge, there are few studies devoted to compare the 
performance of the merged precipitation products with the gauge-only 
interpolated product, especially in the conditions of different rain 
gauge densities. These few exceptions include the studies of Wang and 
Lin (2015) and Bai et al. (2019).A comparison to the gauge-only inter
polated precipitation, however, is very important for the evaluation of 
the added value of the merged products, and could provide valuable 
information to the data users. For instance, the gauge-only interpolated 
precipitation might be more preferred than the SPPs or the merged 
precipitation products for hydrological modeling, providing it shows a 
higher performance (Zhang et al., 2020b). 

The machine learning (ML) algorithms, known as data-driven 
methods, have received increasing popularity in hydrology and 
climate sciences (Sharifi et al., 2019; Wang et al., 2019; Boucher et al., 
2020; Lin et al., 2020; Merz et al., 2020). Many studies have been carried 
out to bias-correct or merge SPPs by taking the advantages of the ML 
techniques. Yang and Luo (2014) corrected the Tropical Rainfall 
Measuring Mission (TRMM) Multisatellite Precipitation Analysis 
(TMPA) product by using a back-propagation (BP) neural network. 
Bhuiyan et al. (2018) and Ehsan Bhuiyan et al. (2019) investigated the 
use of the quantile regression forests (QRF) for blending multiple SPPs 
with the atmospheric reanalysis precipitation dataset, and evaluated its 
performance over the tropical regions with complex terrains. Kumar 
et al. (2019) corrected the near-real-time TMPA product by combining it 
with NRT soil moisture through a nonlinear support vector machine- 
based regression (SVR) model. Recently, Baez-Villanueva et al. (2020) 
proposed a RF-based approach to combine multiple SPPs with the gauge 
observations in Chile. Wu et al. (2020) presented a spatiotemporal deep 
fusion model to merge satellite and gauge-based precipitation in China. 
Bhuiyan et al. (2020) employed two ML algorithms (i.e., the RF and 
neural networks) to generate an error-corrected IMERG product over the 
Brahmaputra river basin. Wehbe et al. (2020) adopted the artificial 
neural networks (ANNs) to derived a multi-source precipitation product 
by fusing Weather Radar, Satellite Retrievals, and Surface Parameters. 
Previous studies demonstrated a great potential of the ML algorithms in 
correcting and merging SPPs. The ML technique has at least the 
following advantages relative to the traditional precipitation merging 
methods (Hengl et al., 2018; Baez-Villanueva et al., 2020; Wu et al., 
2020): (i) it can deal well with the complex and non-linear relationships 
between inputs and output; (ii) it contains no rigid assumption; (iii) it is 
of great flexibility to incorporate multiple types of explanatory vari
ables; (iv) it has the capability of blending gauge observations with 
multiple SPPs; and (v) it is easy to implement. Nevertheless, few of the 
previous studies incorporated the spatial autocorrelation information of 
the gauge-based observations into the precipitation merging framework. 
Moreover, typically, the regression model of the ML algorithm was 
solely used for the precipitation fusion. The combined use of the clas
sification and regression models of the ML algorithms, which could 
improve the rain/no-rain detection skill (Chen et al., 2010), however, 
has rarely been reported in the previous studies. In addition, to our best 
knowledge, few efforts were made to compare the performance of 
different ML algorithms in merging satellite and gauge-based precipi
tation, and to assess the added value of their merged products relative to 
the gauge-only product, especially with the consideration of the influ
ence of rain gauge density. 

In the study, we proposed a novel double machine learning (DML) 
approach developed based on the classification and regression models of 
the ML algorithms to merge multiple SPPs and gauge observations. The 
reliability and validity of the new precipitation merging method were 
tested over the Chinese mainland. Our major objectives are threefold: (i) 
to evaluate the effectiveness of the DML algorithms; (ii) to compare the 
performance of DML to the traditional single machine learning (SML) 
methods, the linear merging methods, and the gauge-only interpolation; 
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and (iii) to assess the added value of the merged products of DML 
relative to the original SPPs and the gauge-only interpolated product. 
The rest of the paper is organized as follows. After the introduction, the 
study region and data are briefly introduced in Section 2. Section 3 
describes the methodology of the study. The results and discussion are 
presented in Section 4 and Section 5, respectively. The conclusions are 
drawn in the last section. 

2. Study region and data 

2.1. Study region 

The Chinese mainland, which covers a large geographical area of 
about 9.6 million km2, was selected as the study region in this research. 
As depicted in Fig. 1, the Chinese mainland exhibits a strong variability 
of the elevations, ranging from 152 m below the sea level in eastern 
China to 7528 m above the sea level on the Qinghai-Tibetan Plateau 
(QTP). According to the gradients of elevations and the precipitation 
patterns, eight subregions can be subdivided from the Chinese mainland 
(Chen et al., 2013; Chen and Li, 2016), including Xinjiang (XJ), Qinghai- 
Tibetan Plateau (QTP), Northeast China (NEC), North China (NC), 
Southeast China (SEC).Northwest China (NWC), the middle and down
stream areas of Yangtze River Basin (YZ), and the southwest Yungui 
Plateau (YGP). The subregions XJ and NWC have an arid and semi-arid 
climate with scarce precipitation and intensive evaporation; YZ, YGP 
and SEC have a tropical and sub-tropical climate; NEC and NC have a 
temperate monsoon climate of medium latitudes with hot and wet 
summer, and cold and dry winter; and QTP has a distinct plateau climate 
with strong radiation, low temperature and highly variable 
precipitation. 

2.2. Data 

2.2.1. Gauge observations 
The precipitation observations at 697 rain gauges were used for 

training and testing the ML algorithms. As plotted in Fig. 1, the rain 
gauges are unevenly distributed over the Chinese mainland, with an 
obvious lower density in the subregions XJ, NWC and QTP than the 
remaining subregions. We collected the half daily precipitation obser
vations for the period 2007–2011 from the China Meteorological Data 
Service Center (CMDSC, http://data.cma.cn/). The half daily precipi
tation are the accumulated data between 20:00–8:00 and 8:00–20:00 
(Beijing time, UTC + 8), respectively. The dataset have been subjected to 
strict quality controls (Shen et al., 2010; Zhao and Yatagai, 2014) 
including (i) the manual inspection and correction; (ii) the extreme 
values’ check; (iii) the spatio-temporal consistency check; and (iv) the 
internal consistency check (e.g. the duplicated data and incorrect units). 

2.2.2. Satellite-based precipitation products 
As listed in Table 1, three near-real-time SPPs including IMERG, 

PERSIANN (Precipitation Estimation from Remotely Sensed Information 
using Artificial Neural Networks) and GSMap (Global Satellite Mapping 
of Precipitation), and one bottom-up SPP generated from the ASCAT soil 
moisture product (i.e., SM2RAIN-ASCAT) were selected in this study. 
The spatial resolutions of these products were unified to 0.1◦×0.1◦ by 
using the nearest neighboring interpolation algorithm to ensure a spatial 
consistency. The daily precipitation of the selected SPPs are consistently 
the accumulated data for the period 00:00–24:00 UTC, which, however, 
are different from the gauge observations that represent the accumula
tions between 20:00 and 20:00 (UTC + 8). In the study, we recalculated 
the daily precipitation observations by adding the accumulated data 
between 8:00 and 20:00 (UTC + 8) in the current day to that between 

Fig. 1. Topography, the division of the subregions, and the spatial distribution of the rain gauges over the Chinese mainland. The gauges marked as red stars are the 
training gauges while those marked as green circles are the test gauges. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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20:00 and 8:00 (UTC + 8) in the next day, as done in our previous study 
(Zhang et al., 2020a). The recalculations would lead the gauge obser
vations to be the accumulated precipitation data between 0:00 and 
24:00 UTC (or 8:00 and 8:00 UTC + 8), which is in line with the SPPs. 

The IMERG product was generated through the intercalibration, 
interpolation and integration of “all” microwave satellite-based precip
itation estimates, precipitation gauge analyses, microwave-calibrated 
infrared (IR) satellite estimates, and other precipitation estimators 
(Huffman et al., 2014). It currently covers the quasi-global areas ranging 
60◦N-60◦S with a 0.1◦×0.1 spatial resolution (Huffman et al., 2019). 
The daily accumulated IMERG Early Run product (Version 6), simply 
referred to as IMERG, was used in this study. The data was downloaded 

from the National Aeronautics and Space Administration at the Goddard 
Earth Sciences Data and Information Services Center (GES DISC, https:// 
disc.gsfc.nasa.gov/). 

The PERSIANN product was produced using the network function 
classification/approximation procedures based on the geostationary IR 
brightness temperature image and daytime visible imagery (Sorooshian 
et al., 2000; Nguyen et al., 2019). It covers 60◦S to 60◦N globally with a 
0.25◦×0.25 spatial resolution from 2000 to present. The data, released 
in a near-real-time manner with 2-day delay, was developed by the 
Center for Hydrometeorology and Remote Sensing (CHRS) at the uni
versity of California, Irvine (UCI). We collected the data from the CHRS 
Data Portal at the website: http://chrsdata.eng.uci.edu/. 

The GSMap product was produced using the Japan Science and 
Technology Agency (JAXA) Global Rainfall Watch System based on the 
combined MW-IR algorithm using extensive satellite data from both 
passive microwave (PMW) and infrared (IR) sensors (Kubota et al., 
2007). It has a quasi-global coverage (60◦S-60◦N) with high spatial and 
temporal resolutions (0.1◦×0.1◦, 1 h). The daily accumulated GSMap 
Early Run product (GSMap-NRT), simply referred to as GSMap, was used 
in this research. The data was obtained from the Earth Observation 
Research Center of JAXA at the website: https://hokusai.eorc.jaxa.jp/. 

The SM2RAIN-ASCAT product were generated by applying the 
SM2RAIN algorithm (Brocca et al., 2013) to the ASCAT soil moisture 
product (Brocca et al., 2019). It was provided at the global scale with a 
high spatial resolution of 12.5 km and a daily temporal resolution. The 
data was selected because it was generated form the satellite-based soil 
moisture product in a bottom-up manner, and could compensate the 
deficiency of the top-down SPPs (Zhang et al., 2020a). The newly 
released version of SM2RAIN-ASCAT (version 1.1), simply referred to as 
SM2RAIN, was collected from Zenodo at the website: https://zenodo.or 
g/record/3405563. 

Table 1 
Data used in the study.  

Data Spatial and 
temporal resolution 

Time 
period 

Source 

Gauge 
observations 

697 gauges/half 
daily* 

2007–2011 CMDSC 
http://data.cma.cn/ 

IMERG 0.1◦×0.1◦/daily 2007–2011 GES DISC https://disc. 
gsfc.nasa.gov/ 

PERSIANN 0.25◦×0.25/daily 2007–2011 CHRS Data Portal 
http://chrsdata.eng.uci. 
edu/ 

GSMap 0.1◦×0.1◦/daily 2007–2011 JAXA 
https://hokusai.eorc. 
jaxa.jp 

SM2RAIN- 
ASCAT 

12.5 × 12.5 km/ 
daily 

2007–2011 Zenodo 
https://zenodo.org/recor 
d/3405563 

* Half daily precipitation are the accumulated data between 20:00–8:00 and 
8:00–20:00 UTC + 8, respectively. 

Fig. 2. Workflow of the study.  
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3. Methodology 

The workflow of the study is briefly illustrated in Fig. 2. We adopted 
four traditional SML schemes and four newly proposed DML algorithms 
to merge multiple SPPs (i.e., IMERG, SM2RAIN, PERISANN and GSMap) 
and gauge observations. The SML algorithms were developed based 
solely on the regression models of random forest (RF), artificial neural 
network (ANN), support vector machine (SVM) and extreme learning 
machine (ELM). The DML algorithms, however, were developed based 
on the classification model of the random forest (RF) in combination 
with the regression models of RF, ANN, SVM and ELM. This leads to four 
different DML algorithms including RF-RF, RF-ANN, RF-SVM and RF- 
ELM. Moreover, the linear satellite-gauge merging methods including 
the inverse error variance weighting (IEVW), the one-outlier-removed 
average (OORA), and the optimized weight average (OWA) were also 
adopted in the study for the comparison with the ML-based precipitation 
methods. Details about the SML and DML algorithms will be presented in 
Sections 3.1.1 and 3.1.2, respectively, and those about the liner merging 
methods in Section 3.2. In addition, a gauge-only precipitation product 
was generated by using the simple but robust IDW (i.e. inverse distance 
weighting) interpolation algorithm (Camera et al., 2014). It was used 
together with the original SPPs as the benchmarks for the evaluation of 
the added value of the merged products of DML. 

In the study, the gauge observations were randomly and spatially 
subdivided into two parts (i.e., 70% and 30%), one was used as the 
training dataset while the other as the test dataset. This is done by 

randomly sampling 70% of all the available gauges in each subregion 
separately, considering the uneven distribution of the rain gauges. If the 
sampling was performed for the entire Chinese mainland, the training 
and test dataset would be biased toward the southeastern regions, due to 
the higher rain gauge densities. In total, this study produced twelve 
precipitation products including four of the DML algorithms, four of the 
SML algorithms, three of the linear merging methods, and one additional 
gauge-only interpolated product. These products and the original SPPs 
were evaluated based on the test dataset by using both the continuous 
and categorical metrics including the Kling-Gupta efficiency (KGE), 
probability of detection (POD), success ratio (SR), bias score (BS) and 
critical success index (CSI). 

3.1. Machine learning-based satellite-gauge merging methods 

Fig. 3 presents the framework of the ML-based methods used to 
merge SPPs and gauge observations. A critical and preliminary step is to 
choose informative auxiliary variables. The geographical and topo
graphical covariates including latitude, longitude, subregion ID and 
altitude were selected to account for the spatial variations of precipi
tation and the influences of topography on precipitation patterns. The 
other topographical variables including slope, aspect, terrain shadows 
and roughness were tested to have minimal impacts on the merged re
sults, and they were excluded from the ML models. In addition, the 
geographical correlation information (i.e., the spatial autocorrelation) 
of the precipitation observations were incorporated into the 

Fig. 3. Framework of the machine learning-based methods used to merge multiple SPPs and gauge observations.  
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precipitation merging framework, following the previous studies (Li 
et al., 2017; Hengl et al., 2018; Baez-Villanueva et al., 2020). The 
rationale behind this is that the nearer observations are more informa
tive than the farther ones for the precipitation estimates. We defined two 
covariates (i.e., NE and POP) to account for the spatial autocorrelation 
between the gauge observations. 

NE =

∑n
i=1wiPi

∑n
i=1wi

,wi =
1
d2

i
(1)  

POP =

∑n
i=1wiPOi
∑n

i=1wi
,wi =

1
d2

i
,POi =

{
0,Pi = 0
1,Pi > 0 (2)  

where NE is the precipitation estimates from the neighbor observations; 
di is the distance to the ith neighbor gauge; POP is the probability of 
precipitation occurrence (Thornton et al., 1997); POi is the binary var
iable related to occurrence of observed precipitation; and Pi is the pre
cipitation at the ith neighbor gauge. 

After the determination of the auxiliary variables, the SML (Section 
3.1.1) and DML (Section 3.1.2) algorithms were trained and calibrated 
at each day of the period 2007–2011 by using the training dataset (i.e. 
the observations at 493 gauges, Fig. 1). The day-to-day training strategy 
was tested to be more effective and computationally efficient than the 
periodic training strategy (e.g., month-to-month and year-to-year). Af
terwards, the trained ML algorithms were used to predict daily precip
itation at the test gauges for the same period (i.e., 2007–2011). The 
observations at the test gauges, which are completely independent from 
the training dataset, would benefit a robust performance evaluation of 
the ML algorithms. The assessments were carried out at the daily scale 
over the entire study period (2007–2011), with some attention paid to 
the seasonal and subregional variations of the performance. 

3.1.1. Single machine learning approach 
The principle of the SML-based merging method is to build a transfer 

function between the predictors and the output based on the regression 
model of the ML algorithm as: 

Pmerg = f (Xs,Xa)+ error (3)  

where Pmerg is the output, which represents the gauge-based and merged 
precipitation, respectively, at the training and test/prediction stages; f is 
the transfer function built with the ML regression model; Xs and Xa are 
the predictors, of which the former represents the precipitation esti
mates of SPPs while the later represents the auxiliary variables. In the 
study, the popular ML algorithms including RF, ANN, SVM and ELM 
were used to construct the transfer functions, which leads to four 
different SML-based precipitation merging methods.  

(1) Random Forest (RF) 

The RF algorithm is an ensemble ML approach that aggregates the 
results of multiple decision tree models (Breiman, 2001). The random
ness of RF mainly reflects in two aspects: one is the random samples, and 
the other is the random features or predictors. The bootstrap method is 
used to generate the random samples from the training dataset, which 
are further adopted to construct a number of decision trees. At each 
decision tree, the internal splits are generated according to the randomly 
selected features. RF could substantially alleviate the overfitting prob
lems and improve the generalization capability, owing to the random 
selections of the input samples and predictors, and the use of ensemble 
predictions. This study implemented the RF algorithm using the MAT
LAB TreeBagger function. As shown in Table 2, the hyperparameters 
including the Ntree and MinObs were determined for the RF algorithm 
through the trial and error procedures. They were identified as 50 and 5, 
respectively. The hyperparameter Nsplit, i.e., the number of variables 
randomly sampled at each decision split, was set to one third of the 
number of the input variables, following the previous studies (Beck 

et al., 2019; Baez-Villanueva-test et al., 2020). 
The TreeBagger has a built-in function to measure the relative 

importance of the different predictors. This is done through the method 
based on Permutation Feature Importance (PFI) by using the out-of-bag 
(OOB) samples (i.e., the samples not selected by the bootstrap approach) 
(He et al., 2016; Schmidt et al., 2020). The underlying principle of PFI is 
to broke the ties between the target and one of the predictors, and then 
estimate the prediction accuracy deterioration (Schmidt et al., 2020). 
The stronger of the deterioration, the more important of the predictor 
for the model’s prediction. More specifically, PFI is estimated with the 
following steps: (i) calculating the original prediction error (i.e., the 
mean squared error for the regression tree, and the misclassification 
probability for the classification tree) across the OOB observations for 
the jth decision tree (i.e., ErrOOBj); (ii) generating the permuted pre
dictor matrix by shuffling the ith predictor while keeping the others 
fixed, and re-estimating the prediction error for the jth decision tree (i.e., 
ErrOOBi, j); (iii) calculating the increase in the prediction error 
(IncreErrori, j) after shuffling the ith predictor using the Eq.4; and lastly, 
(iv) estimating PFI of the ith predictor (PFIi) by averaging the IncreErrori, j 
and dividing it by the standard deviation (σ) over the decision trees 
using Eq.5. 

IncreErrorii,j = ErrOOBii,j − ErrOOBj (4)  

PFIi =

1
Ntree

∑Ntree
j IncreErrorii,j

σ(IncreErrorii,j)
, i = 1, 2, 3⋯10 (5)    

(2) Artificial Neural Network (ANN) 

The ANN algorithm is an information processing paradigm inspired 
by the biological neural networks (Gardner and Dorling, 1998). The 
basic elements of ANN are the neurons (or units), which are inter
connected by the weighted links. At each unit, the output is computed by 
a transfer (or active) function of the weighted summation of the inputs. 
The multilayer perceptron (MLP) with a three-layer structure (i.e., the 
input, hidden and output layers), which are one of the widely used forms 
of the ANN algorithms, was used in the study. We implemented the ANN 
algorithm using the MATLAB fitnet function. This study setted the 
transfer functions (TranFunc) as ‘tansig’ for both the hidden and output 
layers of ANN. As presented in Table 2, the hyperparameters including 
the NNH and IW were optimized through a parallel computing based and 
grid-research (PC-GR) approach. More specifically, we considered 3 
NNH (i.e., 10,20, 30) and 10 random IW (i.e., 30 grids), and searched the 
best 10 grids through the cross validation. The searching processes were 
implemented via the parallel computing technique to improve the 
computational efficiency. The ensemble average of the precipitation 
estimations with the best 10 parameter sets were used as the final 
predictions. 

Table 2 
Descriptions and calibration methods of the hyperparameters for the different 
ML algorithms.  

ML 
algorithm 

Hyperparameter Descriptions Calibration method 

RF Ntree Number of trees Trial and error 
MinObs Minimum number of 

observations per node 
Trial and error 

ANN NNH Numbers of nodes in 
the hidden layer 

Parallel computing- 
based and grid- 
research (PC-GR) 

IW Initial weight PC-GR 
SVM C Penalty parameter PC-GR 

γ Parameter of the 
radial basis function 
(RBF) 

PC-GR  
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(3) Support Vector Machine (SVM) 

The SVM is a popular ML algorithm widely used for both classifica
tion and regression purposes (Vapnik, 1998). The classification model of 
the SVM aims to find a hyperplane whereby the separate categories are 
divided by a clear gap that is as wide as possible. On the other hand, the 
regression model aims to find a hyperplane expressed by a regression 
function that best describes the observed outputs with an error toler
ance. In addition to linear problems, SVMs can also deal efficiently with 
non-linear problems by using the kernel function to map the non-linear 
inputs to linearly separable and high-dimensional feature spaces. In this 
study, the SVM algorithm was implemented by using the LibSVM 
package (Chang and Lin, 2011). The kernel function (KernFunc) was set 
as the radial basis function (RBF) through the trial and error procedure. 
The two-stage PC-GR approach was applied to optimize the two 
hyperparameters of SVM including C and γ. We first determined the best 
parameter set (C1 and γ1) from the coarse grids (C = γ = − 810:2:10) 
through the cross validation, and then searched the fine grids centered 
on C1 and γ1, i.e., (C1-2):0.2:(C1 + 2), (γ1-2):0.2:(γ1 + 2), to identify the 
final best parameter set. Similarly, the parallel computing technique was 
used to accelerate the optimization and training processes.  

(4) Extreme Learning Machine (ELM) 

The ELM algorithm proposed by Huang et al. (2012) has the similar 
structure as the MLP with one input layer, one hidden layer and one 
output layer. After randomly initializing the weights and bias between 
the input and hidden layers, the weights between the hidden and output 
layers are directly estimated as the product of the Moore-Penrose 
generalized inverse of the output matrix of the hidden layer and the 

target variable. This is quite different from the MLP that estimates the 
weights between the hidden and output layers via an iterative learning 
process. The distinct feature leads to a high computational efficiency of 
the ELM algorithm. The codes of ELM are available at: https://www.ntu. 
edu.sg/home/egbhuang/elm_codes.html. We modified the original 
codes to get an ensemble prediction of the 10 best estimates of ELM 
through the parallel computing-based optimization process similar to 
ANN. These efforts are mainly devoted to ameliorate the impact of the 
random initial weights and biases between the input and hidden layers, 
and the influence of different number of nodes in the hidden layer. 

3.1.2. Double machine learning approach 
Inspired by the work of Chen et al. (2010), this study proposed a 

novel DML approach based the classification and regression models of 
the ML algorithm to merge multiple SPPs and gauge observations. As 
presented in Fig. 4, we first developed a classification model by using 
one of the ML algorithms (i.e., RF, ANN, SVM and ELM). The precipi
tation observations that are greater than zero were classified as ‘wet 
day’, while those are equal to zero as ‘dry day’. The classified precipi
tation observations were used together with the input variables to train 
and optimize the classification model of each ML algorithm, which refers 
to the first ML. The training and optimization processes are similar to the 
regression models of the ML algorithms (Section 3.1.1), with the dif
ference that the optimization objectives are the classification accuracy 
of the precipitation events. Afterwards, the classification accuracy of 
‘dry/wet day’ for each ML algorithm was evaluated based on the inde
pendent test dataset (Fig. 1); and the best performed ML algorithm was 
identified. The classification accuracy (CA) was defined as: 

Fig. 4. Schematic of the double machine learning (DML) algorithm.  
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CA =
1
N

∑N

i=1

Wi + Di

Ti
(6)  

where Wi and Di are the total number of days correctly classified as ‘wet 
day’ and ‘dry day’, respectively, at the ith gauge; Ti is the total number of 
days over the evaluation period (i.e., 2007–2011); and N is the total 
number of gauges in the test dataset (i.e., 204 in our case). At the second 
stage, we trained the regression model of each ML algorithm to estimate 
precipitation at the day that was predicted as ‘wet day’, similar to the 
SML approach, which refers to the second ML. The amount of precipi
tation was set to zero if the day was predicted as ‘dry day’ by the clas
sification model of the ML algorithm. Hence, the merged products of 
DML were generated by combining the predictions of the classification 
and regression models of the ML algorithms at the two separate stages. 

The ‘wet/dry day’ classification accuracy of the classification and 
regression models of the ML algorithms (i.e., RF, ANN, SVM and ELM) 
are listed in Table 3. The classification models show very comparable 
classification accuracy (0.888–0.889), which are obviously higher than 
the regression models (0.286–0.450). The preliminary analysis indicates 
that the inclusion a classification model into the precipitation merging 
framework is reasonable, and could improve the rain/no-rain detection 
skill. In this study, we selected the classification model of RF for the 
classification purpose, due to its slightly better performance and higher 
computational efficiency relative to the other ML algorithms. This led to 
four different DML algorithms including RF-RF, RF-ANN, RF-SVM and 
RF-ELM. 

3.2. Linear satellite-gauge merging methods 

This study adopted three linear precipitation merging methods, 
including the inverse error variance weighting (IEVW), the optimized 
weight average (OWA), and the one-outlier-removed average (OORA), 
which are described in Eqs. (7), (8) and (9), respectively. 

Pmerg =
1

∑N
i=11/e2

i

∑N

i=1

1
e2

i
×Si (7)  

Pmerg =
∑N

i=1
wopti×Si (8)  

Pmerg =
1

N − 1
∑N− 1

i=1
Si (9)  

where Pmerg is the merged precipitation; N is the number of SPPs; Si is the 
ith SPP; e is the error variance; and wopt is the optimized weight. The 
error variance and weight of each SPP were calculated for the IEVW 
method based on the training dataset; and the weights of SPPs were 
optimized for the OWA method with the objective of minimizing the 
root mean square error (RMSE) between the precipitation estimates and 
the observations in the training dataset. Afterwards, the weights were 
used by the IEVW and OWA methods to predict precipitation at the test 
gauges. Regarding to the OORA method, one of the SPPs that has the 
largest RMSE was removed and regarded as the outlier, and the arith
metic average of the precipitation estimates of the remaining SPPs was 
used as the merged results. 

3.3. Performance evaluation 

The Kling-Gupta efficiency (KGE) proposed by Gupta et al. (2009) 
was used for the performance evaluations. As shown in Eq.10, the KGE is 
a multi-component performance metric that includes the correlation 
coefficient (CC), the bias ratio (Beta), and the variability ratio (Gama), 
which measure the correlation, bias and relative temporal variability 
between the precipitation estimates and the gauge observations, 
respectively. 

KGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − CC)2
+ (1 − Beta)2

+ (1 − Gama)2
√

(10)  

CC =

∑n
i=1(P

merg
i − Pmerg

mean)(Oi − Omean)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Pmerg

i − Pmerg
mean)

2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1
(Oi − Omean)

2
√ (11)  

Beta =
μmerg

μO
(12)  

Gama =
σmerg

σO
(13)  

where P and O are the merged precipitation and the observations, 
respectively, at the test gauges; µ is the mean value; σ is the standard 
deviation; i is the time step; and n is the total number of time steps. In the 
study, following Kling et al. (2012), we calculated the Gama by using Eq. 
(14), instead of E q.13, to ensure the variability and bias ratios are not 
cross-correlated. 

Gama =
σmerg/μmerg

σO/μO

(14) 

The ranges of the KGE, CC, Beta and Gama are [− ∞, 1], [− 1, 1], [0, 
∞] and [0, ∞], respectively. The closer of the KGE and its components to 
unity, the better the performance of the precipitation products. 

In addition, we adopted four categorical metrics to assess the capa
bility of the products in detecting precipitation events. They are the 
probability of detection (POD), success ratio (SR), bias score (BS) and 
critical success index (CSI), which are defined as in Eqs. (15), (16), (17) 
and (18), respectively. 

POD = a/(a+ c) (15)  

SR = a/(a+ b) (16)  

BS =
POD
SR

= (a + b)/(a + c) (17)  

CSI = a/(a+ b+ c) (18)  

where a is the number of precipitation events correctly detected; b is the 
number of non-events that are incorrectly detected (i.e., event was 
detected to occur but not observed to occur); c is the number of the 
missing events (i.e., event was not detected to occur but observed to 
occur). The four metrics were mapped on a single diagram proposed by 
Roebber (2009) to better visualize the evaluation results. The closer of 
the metrics to the upper right of the diagram, the better detectability of 
precipitation events. The perfect performance is reached when POD =
SR = CSI = BS = 1. The categorical metrics were computed at each test 
gauge for the precipitation thresholds of 1, 5, 10 and 15 mm/day, 
respectively. 

3.4. Sensitivity analysis of training dataset size 

A sensitivity analysis was additionally conducted to investigate the 
impacts of training dataset size on the performance of the DML algo
rithms and the gauge-only interpolation. This is done by reducing the 
size of the original training dataset, and analyzing the changes of the 

Table 3 
Wet/dry day classification accuracy of the classification and regression models 
of the RF, ANN, SVM and ELM algorithms.  

Model Machine learning (ML) algorithms 

RF ANN SVM ELM 

Classification  0.899  0.895  0.894  0.888 
Regression  0.450  0.296  0.493  0.573  
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accuracy of the precipitation estimates at the test gauges. Specifically 
speaking, the size of the training dataset (i.e., the proportions of rain 
gauges in the training dataset) was first randomly reduced to 80%, 60%, 
40% and 20% of its original size that includes 493 gauges. The reduction 
processes were implemented for each subregion separately to ensure the 
condensed training dataset is representative over the Chinese mainland. 
Afterwards, we repeated the DML-based merging process and the 
interpolation process with the different sizes of the training dataset. 
Lastly, we analyzed the variations of the performance of the DML al
gorithms and the gauge-only interpolation with the decreasing sizes of 
the training dataset. The sensitivity analysis would facilitate an evalu
ation of the robustness and reliability of the DML algorithms. 

4. Results 

4.1. Performance assessment over the Chinese mainland 

4.1.1. Overall performance 
Fig. 5 shows the boxplots of the KGE and its components (CC, Beta 

and Gama) for the sixteen precipitation products over the Chinese 
mainland. The median KGE values are relatively small for GSMap, 
PERISANN and SM2RAIN, which are 0.39, 0.31 and 0.32, respectively 
(Fig. 5a). The IMERG product performs the best among the original 

SPPs, with a median KGE of 0.54. The merged products produced by the 
three SML algorithms (i.e., RF, ANN and ELM) achieve higher median 
KGE values than the original SPPs, which are 0.65, 0.60 and 0.60, 
respectively. The median KGE of the merged product generated by SVM, 
however, is smaller than the IMERG product. The products of the linear 
merging methods (i.e., OORA, OWA and IEVW) show comparable per
formances to the IMERG product in terms of KGE. Regarding to the 
gauge-only interpolated product (i.e., IDW), interestingly, it provides a 
comparable and even higher median KGE than the products of the SML 
algorithms and the linear merging methods. The merged products of the 
DML algorithms (i.e., RF-RF, RF-ANN, RF-SVM and RF-ELM) have 
consistently higher median KGE (0.67–0.71) than the other precipitation 
products. Fig. 5b shows the boxplots of the correlation coefficients (CC) 
for the different precipitation products. The merged products of SML and 
DML give comparable median CC, which are higher than other products. 
The original SPPs have the lowest CC (ranging 0.46–0.64) among the 
sixteen precipitation products. The median bias ratios (Beta), as show in 
Fig. 5c, are closer to unity with smaller ranges for the DML-based and 
RF-based products, and the gauge-only interpolated product, in com
parison to other products. As present in Fig. 5d, the median variability 
ratio (Gama) for the products of DML range from 0.83 to 0.90, which are 
apparently higher than those of SML (0.66–0.76), and the linear merged 
and gauge-only interpolated products (0.70–0.72). The median Gama of 

Fig. 5. Boxplots of the KGE and its components (CC, Beta and Gama) for the merged precipitation products of the DML (red color) and SML (blue color) algorithms, 
the original SPPs (black color), the gauge-only interpolated product (green color) and the linear merged products (purple color) over the Chinese mainland. The 
median KGE values are provided at the top of each box. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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IMERG, GSMap and PERISANN are close to unity, but with large ranges 
in comparison to the other products. Overall, the merged products of the 
DML algorithms outperform the other merged products and the gauge- 
only interpolated product, in terms of KGE. 

Fig. 6 shows the Roebber’s performance diagrams for the sixteen 
precipitation products with different precipitation thresholds over the 
Chinese mainland. The merged products of the DML algorithms exhibit 
the best performance in detecting precipitation events with the 
threshold of 1 mm/day, followed by the RF-based product and the 
gauge-only interpolated product. The linear merged products and the 
products of ANN, SVM and ELM achieve comparable median CSI values 
but larger BS to the IMERG and GSMap products. With respect to the 
precipitation events higher than 5 mm/day (i.e., precipitation threshold 
≥ 5 mm/day), the merged products of the DML algorithms perform 
comparable to those of the SML algorithms except SVM. They consis
tently perform better than the other products, as shown in Fig. 6a, c and 
d. Comparing the results for different precipitation thresholds, all the 
products tend to show lower detectability of the precipitation events 
with larger magnitudes, as indicated by the decreasing CSI values. 
Regardless, the merged products of the DML algorithms outperform the 
other products in detecting precipitation events with the threshold of 1 
mm/day, and perform better than the original SPPs regardless of the 
precipitation thresholds. 

4.1.2. Seasonal performance 
Fig. 7 presents the boxplots of the KGE and CSI for the 16 precipi

tation products in the seasons of spring (March-May), summer (June- 
August), autumn (September-November), and winter (December- 

February). In terms of KGE, the original SPPs consistently perform worse 
than the products of the DML algorithms in all of the seasons. The linear 
merged products obviously outperform GSMap, SM2RAIN and PER
SIANN in spring, autumn and winter, while they perform worse than the 
gauge-only interpolated product. The IMERG product shows a compa
rable performance to the merged product in spring and summer, 
although it exhibits a lower performance in autumn and winter. The 
products of the SML algorithms including ELM, SVM and ANN generally 
perform better than the original SPPs, but they perform worse than the 
gauge-only interpolated product in the different seasons. The products 
of the DML algorithms show higher performances than other products in 
terms of KGE in spring, summer and autumn. In winter, the products of 
the DML and RF algorithms and the gauge-only interpolation achieve 
comparable higher performances than the other products. In terms of 
CSI, the products of the DML algorithms outperform all the other 
products in spring, summer and autumn with the precipitation threshold 
of 1 mm/day, followed by RF-based product and the gauge-only inter
polated product, as shown in Fig. 7e, f and g. In winter, the products of 
the DML, RF and ANN algorithms perform comparable to the gauge-only 
interpolated product, but outperform the remaining products. 

4.2. Performance assessment at the subregional scale 

Fig. 8 shows the boxplots of the KGE for the sixteen precipitation 
products over the eight subregions of the Chinese mainland. The merged 
products of the DML algorithms perform better than the other products 
in most of the subregions including SEC, YZ, NC, YGP, NEC, and NWC. In 
the subregion QTP, the product of RF-RF performs best among the 

Fig. 6. Roebber’s performance diagram for the merged precipitation products of the DML (red color) and SML (blue color) algorithms, the original SPPs (black 
color), the gauge-only interpolated product (green color) and the linear merged products (purple color). The green dash line labels on the outward extension of the 
line represents bias score (BS), while the black solid line represents critical success index (CSI). The four diagrams present the results for the precipitation thresholds 
of 1, 5, 10 and 15 mm/day, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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sixteen precipitation products, followed by those of RF-ANN, RF and RF- 
SVM. The products of RF-RF, RF-ANN and RF-SVM perform better than 
the other products in the subregion XJ, while the product of RF-ELM 
perform worse than SM2RAIN and the gauge-only interpolated prod
uct. Fig. 9 presents the Roebber’s performance diagrams for the different 
precipitation products over the different subregions. The products of 
DML outperform the other products in detecting precipitation events 
(threshold = 1 mm/day) in all the subregions, especially in the subre
gion XJ. The RF-based product and the gauge-only interpolated product 
show higher performances than the other products except those of DML. 
All of the precipitation products tend to perform worse in XJ than in the 
other subregions. The performances for the merged and interpolated 
products can vary substantially over the eight subregions. This can be 
explained by the varying densities of the rain gauges used for the 
training of the ML algorithms or for the interpolation, and the varying 
complexities of the spatial–temporal variabilities of precipitation. 
Nevertheless, our results indicate that, in terms of KGE and CSI, the 
merged products of the DML algorithms generally perform better than 
the other precipitation products at the sub-regional scale. 

4.3. Influence of training dataset size on the performance of the DML 
algorithms 

Fig. 10 shows the boxplots of the KGE for the DML-based precipita
tion products (i.e., RF-RF, RF-ANN, RF-SVM and RF-ELM) and the 
gauge-only interpolated product (i.e., IDW) at the test gauges with the 

different sizes of the training dataset. The KGE ranges of the best per
formed SPP (i.e. IMERG), which is independent of the size of the training 
dataset, were also provided for the comparison purpose. We can observe 
the decreasing trends of the performances for the merged and gauge- 
only interpolated products when the size of the training dataset (i.e., 
the proportions of rain gauges in the training dataset) reduces from 
100% to 20%. Nevertheless, the deteriorations of the performance are 
more significant for the gauge-only interpolated product than the DML- 
based product. Taking a close look, we can note that the performance of 
the interpolated product is comparable and even worse than the best SPP 
when the proportion of gauges in the training dataset drops below 40%. 
The DML-based products, however, consistently perform better than the 
best SPP regardless of the size of the training dataset. Meanwhile, the 
performances of the DML-based products only show slight decreases 
when the size of the training dataset drop from 100% to 60%. The 
sensitive analysis implies that the newly proposed DML approach is 
robust, and has obvious advantages over the gauge-only interpolation in 
the condition of low training dataset size. 

5. Discussion 

5.1. Relative importance of the predictors 

An analysis of the relative importance of the predictors could help to 
better understand and interpret the ML algorithm. In this study, the 
relative importance of the selected predictors (i.e., Permuted Feature 

Fig. 7. Boxplots of the KGE (top panel) and CSI (bottom panel) for the merged precipitation products of the DML (red color) and SML (blue color) algorithms, the 
original SPPs (black color), the gauge-only interpolated product (green color) and the linear merged products (purple color) in spring, summer, autumn and winter. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Importance, PFI) for the classification and regression models of the RF 
algorithm, which are employed by the DML approach (i.e., RF-RF), were 
estimated using the MATLAB TreeBagger function. As shown in Fig. 11, 

all the predictors achieve the PFI higher than 0.15 for both the classi
fication and regression models, indicating that they could contribute 
useful information to the precipitation merging results. The spatial 

Fig. 8. Boxplots of the KGE for the sixteen precipitation products over the eight subregions of the Chinese mainland.  

Fig. 9. Roebber’s performance diagrams for the sixteen precipitation products (threshold = 1 mm/day) over the eight subregions of the Chinese mainland. The green 
dash line represents bias score (BS), while the black and labeled solid line represents critical success index (CSI). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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autocorrelation predictors (i.e., NE and POP) and the SPPs including 
GSMap, SM2RAIN and IMERG exhibit higher importance than the other 
predictors. This indicates that it is very important to include the spatial 
autocorrelation information of the gauge observations in the ML-based 
precipitation merging framework, which could help to incorporate the 
geographical laws into ML (Yuan et al., 2020). The PERSIANN product 
shows an obviously lower importance than the other SPPs (i.e., GSMap, 
SM2RAIN and IMERG), which might be explained by its coarser spatial 
resolution. The time-invariant covariates including altitude, longitude, 
attitude and Region ID present are of relatively low importance, which is 
consistent with the previous reports (Bhuiyan et al., 2018, 2020; Baez- 
Villanueva-test et al., 2020). 

5.2. Added value of the merged products of the DML algorithms 

A quantitative assessment of the added value of the merged products 
relative to the merging members is of great importance for evaluating 
the effectiveness of the satellite-gauge merging method. In the study, we 
further analyzed the variations of the added value (i.e., the increase in 
KGE, ΔKGE) of the DML-based products (i.e., RF-ANN and RF-RF) 

relative to the gauge-only interpolated product (i.e., IDW) and the 
best performed SPP (i.e., IMERG) with increasing rain gauge densities (i. 
e., the number of gauges per 106 km2) in the training dataset. The an
alyses were performed for the Chinese mainland and its five subregions. 
The remaining subregions including the QTP, XJ and NWC were 
excluded for the analyses due to the low rain gauge densities. As shown 
in Fig. 12, the added value of the merged product relative to the best SPP 
consistently exhibits an upward trend with increasing rain gauge den
sities, while that relative to the gauge-only interpolated product shows a 
downward trend. The relationships between ΔKGE and the rain gauge 
densities could be well represented by the logarithmic curves, with the 
coefficients of determination (R2) higher than 0.70 in most of the cases. 
The finding agrees well with that reported by Bai et al. (2019). 

We can observe from Fig. 12 that the ΔKGE values are consistently 
greater than zero in the Chinese Mainland and its subregions including 
YZ, NZ, NEC and YGP with different gauge densities in the training 
dataset. Meanwhile, they range from 0.09 to 0.54 (or 0.06 to 0.55) and 
0.11 to 0.98 (or 0.07 to 0.97), respectively, for the merged product of 
RF-RF (or RF-ANN) relative to the best SPP and the gauge-only inter
polated product in the subregions QTP, XJ and NWC, which are shown 

Fig. 10. Boxplots of the KGE for the DML-based precipitation products, the gauge-only interpolated product (IDW), and the best SPP with the different sizes of the 
training dataset. 

Fig. 11. Permuted Feature Importance (PFI) of the selected predictors for the classification (left) and regression (right) models of the RF algorithm.  

L. Zhang et al.                                                                                                                                                                                                                                   



Journal of Hydrology 594 (2021) 125969

14

here. The improvement of the precipitation estimates over the different 
subregions with varying rain gauge densities overall demonstrate the 
transferability of the proposed DML algorithm in a variety of situations. 
Nevertheless, we admit the new precipitation merging method is more 
effective in the regions with scarce or medium rain gauge densities than 
those with extremely low or high rain gauge densities, as reported by 
Wang and Lin (2015) and Bai et al. (2019). The extremely low gauge 
density would result in a poor representation of the training dataset, 
which might even induce a decrease in the performance of the merged 
product relative to the original SPPs, as shown in Fig. 12b. On the other 
hand, if the rain gauge density is high enough, the precipitation patterns 
could already be well captured by the gauge-based precipitation ob
servations; and the incorporation of the precipitation information from 
the SPPs would have a limited ability to further improve the precipita
tion estimates. It should be noted that the condition “rain gauge density 
is extreme low or high enough” would vary with region to region, 
depending on the topographic and climatic features as well as the 
selected ML algorithm. For instance, the added value of merged product 
of RF-ANN relative to the gauge-only interpolated product will converge 
to zero in the subregion NC if the rain gauge density is higher than 403 
gauges per 106 km2, according to the logarithmic curves shown in 
Fig. 12d. However, it needs to exceed 1000 gauges per 106 km2 in YGP. 

As mentioned before, typically, the performance of the merged 
precipitation product is compared solely to the original SPPs (Yang 
et al., 2017; Kumar et al., 2019; Baez-Villanueva et al., 2020; Chen et al., 
2020b; Wu et al., 2020). Our results, however, imply that a comparison 

made to the gauge-only interpolated product is of equal importance, 
considering that the added value of the merged product relative to the 
interpolated product would decrease or even converge to zero with the 
increasing rain gauge densities. Moreover, we argue that more efforts 
are needed to investigate whether the added value of the merged 
product relative to the original SPPs and to the gauge-only interpolated 
product could be propagated to hydrological modeling (Liu et al., 2016; 
Ur Rahman et al., 2020). 

5.3. Comparison of the machine learning algorithms 

This study adopted four SML algorithms (i.e., RF, ANN, SVM and 
ELM) and four DML algorithms (i.e., RF-RF, RF-ANN, RF-SVM and RF- 
ELM) to merge multiple SPPs and gauge observations. To the best of 
our knowledge, this is the first attempt to compare the performances of 
different ML algorithms for blending satellite and gauge-based precipi
tation. In terms of KGE, RF performs best while SVM performs worst 
among the SML algorithms over the Chinese mainland. The superiority 
of RF to the other SML algorithms tends to be more obvious in the gauge- 
scarce subregions (i.e., NWC, QTP and XJ) than in the other subregions. 
Regarding to the DML algorithms, RF-RF and RF-ANN perform better 
than RF-SVM and RF-ELM. Nevertheless, there seems no consistent re
sults at the sub-regional scale, And the performances of the SML and 
DML algorithms could vary with the subregions. 

The DML algorithms consistently perform better than the SML al
gorithms in terms of KGE and CSI (precipitation threshold = 1 mm/day) 

Fig. 12. Variations of the added value (i.e., ΔKGE) of the merged products of RF-ANN and RF-RF relative to the gauge-only interpolated product IDW (dark turquoise 
and blue colors) and IMEGR (dark black and red colors) with increasing rain gauge densities in the training dataset. The points ofΔKGE are fitted with the logarithmic 
curves. The six subplots show the results over the Chinese mainland and its five subregions (i.e., SEC, YZ, NC, NEC and YGP). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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over the Chinese mainland. The median KGE for the DML-based prod
ucts would increase by the ranges from 0.04 to 0.20 (or 6.09% to 
41.62%) relative to the SML-based products. Meanwhile, the median CSI 
would increase by the ranges from 0.04 to 0.22 (or 7.05% and 52.51%). 
At the sub-regional level, the increases in the median KGE could be up to 
6.78 or more than 10 times, and the increased in the median CSI up to 
0.28 or 378.04%. The better performance of DML than SML is mainly 
due to the fact that the former could provide a higher classification 
accuracy of the ‘dry/wet day’ (see Table 3), which leads to a better 
capability in describing the temporal dynamics of precipitation, as 
indicated by the obviously higher Beta values (see Fig. 5d). 

The increase in the median KGE could approach to 31.48% for the 
merged product of RF-ANN relative to the best SPP over the Chinese 
mainland. Baez-Villanueva-test et al. (2020) reported an improvement 
of their blended product of RF by about 43% in terms of KGE, in com
parison to the best performed merging member. The greater improve
ment could be explained by the fact their rain gauges are apparently 
denser than ours. As shown in Fig. 12, higher rain gauge densities would 
lead to more added value of the merged product relative to the merging 
members. In the study of Wu et al. (2020), the performance improve
ment of their ML-based merged product is about 9% in terms of CC over 
the Chinese mainland, which is lower than ours that could be up to 21%. 
The improvement of the precipitation estimates achieved by the DML 
algorithms also tends to be higher than some other related studies 
conducted in China (Ma et al., 2018; Bai et al., 2019; Zhang et al., 
2020a), which adopted the non-machine learning methods such as the 
linear merging approach, the geographical difference/ratio analysis, 
and the BMA method. The comparisons made to the previous studies 
prove the effectiveness of our new satellite-gauge merging method. 
Nevertheless, we admit that the DML approach is subjected to some 
deficiencies. As mentioned before, it might not be effective in the regions 
with extremely low or high rain gauge densities. Moreover, it might not 
facilitate the fusion of real-time/near-real-time data due to the fact the 
gauge-based observations are typically unavailable in a real-time or 
near-real-time manner. Additionally, the approach as well as some other 
ML-based methods have limited abilities to capture extreme precipita
tion, as pointed out by He et al. (2016) and Bhuiyan et al. (2020). 

5.4. Ensemble of the DML algorithms 

This study developed and adopted four DML algorithms including 
RF-RF, RF-ANN, RF-SVM and RF-ELM to merge multiple SPPs and 
gauge-observations. It is easy to raise an interesting question, i.e., 
whether the ensemble of the DML algorithms could further improve the 
precipitation estimates. In order to answer the question, we additionally 
produced three ensemble precipitation products based on the pre
dictions of the four DML algorithms by using the IEVW, OORA, and OML 
(optimal machine leaning) methods. The IEVW and OORA methods are 
similar to the linear precipitation merging approaches (see Section 3.2) 

with the difference that the SPPs are replaced by the ensemble members 
(i.e., the predictions of the DML algorithms). The OML method is to 
select the best performed DML algorithm to predict precipitation. The 
training dataset can’t be simultaneously used to train and evaluate the 
performance of the DML algorithms, due to the issue of overfitting and 
each DML algorithm can provide equally good precipitation estimates in 
the training process. We separated the original training data into two 
parts: one (80%) is used to train the DML algorithms, and the other 
(20%) to estimate the ensemble weights of the IEVW method, and to 
determine the outlier and the best DML algorithm for the OORA and 
OML methods. As shown in Fig. 13, the ensemble precipitation products 
perform very comparable to the original products of the DML algo
rithms. This indicates that the ensemble of the DML algorithms shows 
little potential for the further improvement of the precipitation esti
mates. This might be explained by the following reasons. One is that the 
performance of DML is not spatially uniform and can vary significantly 
over different locations. The ensemble weights, the outlier and the 
optimal DML algorithm determined by the 20% of the training dataset 
might not be applicable to the gauges in the test dataset. The other is that 
the condensed training data (80%) will impair the performance of the 
DML algorithms (see Section 4.3), which will in turn affect the perfor
mance of the ensemble precipitation products. 

5.5. Limitations and uncertainties 

The spatial scale mismatch between the SPPs and gauge observations 
was neglected in the study. We assumed the point-scale and gauge-based 
precipitation are equal to the grid-scale and satellite-based precipita
tion, as done in many other studies (Ebrahimi et al., 2017; Bai et al., 
2019; Kumar et al., 2019; Baez-Villanueva et al., 2020; Zhang et al., 
2020a). The hypothesis, however, might not hold true, especially over 
the regions of complex topography, which would affect the satellite- 
gauge merging results, and meanwhile, bring some biases to the per
formance assessments of the precipitation products. In recent years, 
some researchers have attempted to first downscale the grid-scale SPPs 
to the point scale via the approaches such as the kriging and GWR (Chen 
et al., 2018, 2020a) or to first upscale the point-scale observation to the 
grid scale (Yang et al., 2017), and then carried out the satellite-gauge 
merging task. These operations might help to ameliorate the in
fluences of the spatial scale mismatch, although they would produce 
additional uncertainties. 

The training and test dataset were sampled for each subregion 
separately, due to the fact the rain gauges are more densely distributed 
in southeast China than in northwest China. The region-by-region 
sampling method would benefit a better representation of the training 
and test dataset over the Chinese Mainland, but not ensure a good 
representation in all of its subregions. This is because the sampling was 
conducted via a random manner at the subregional scale. The random 
sampling method, widely adopted in many previous researches (Ehsan 

Fig. 13. Boxplots of the KGE for the ensemble precipitation products and the merged products of the DML algorithms.  
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Bhuiyan et al., 2019; Sharifi et al., 2019; Baez-Villanueva-test et al., 
2020; Wehbe et al., 2020), might not be able to generate satisfactory 
samples if the rain gauges have a skewed distribution, e.g. QTP. This 
might bring some uncertainties to the subregional-scale results. Further 
efforts are needed to investigate the impacts of the sampling methods on 
the precipitation merging results. 

This study produced a gauge-only product using the IDW interpola
tion algorithm to better evaluate the added value of the merged pre
cipitation products. Although the IDW method is a popular and 
computationally efficient interpolation method, it has several de
ficiencies such as the neglection of the influence of topography on pre
cipitation (Xu et al., 2015) and the generation of the “bull’s eyes” 
phenomenon (Achilleos, 2008), which limits its precipitation estimation 
accuracy, especially in the mountainous areas with complex terrains 
such as the subregion QTP. Hence, the findings of the study might not be 
applicable if some other more advanced interpolation algorithms, e.g., 
MicroMet (Liston and Elder, 2006), are used for the development of the 
gauge-only product. 

The gauge-based precipitation observations, even subjected to the 
quality control, might still have biases sourced from the wind-induced 
gauge undercatch, wetting and evaporation losses, and underestima
tion of trace precipitation (Ye et al., 2004; Zhang et al., 2020a). More
over, as shown in Fig. 1, the rain gauges are unevenly distributed over 
the Chinse Mainland, i.e., biased toward the low-elevation and coastal 
areas. The uncertainties associated with rain gauges would propagate to 
the precipitation merging results, considering that the gauge-based ob
servations serve as the target or response variable for the ML algorithms. 
Lastly, only the topographical and geographical covariates and the 
spatial autocorrelation information were incorporated into the precipi
tation merging framework. Other predictors such as the satellite-based 
surface soil moisture (Kumar et al., 2019) and the cloud properties 
(Sharifi et al., 2019), could also provide valuable information for the 
precipitation estimates, but they were not considered in the study. This 
opens for further investigations in the future. 

6. Conclusions 

A novel double machine learning (DML) approach was proposed to 
merge multiple SPPs (i.e., IMERG, SM2RAIN-ASCAT, PERISANN, and 
GSMap) and gauge observations over the Chinese mainland. The clas
sification model of random forest (RF) was used together with the 
regression models of RF, artificial neural network (ANN), support vector 
machine (SVM) and extreme learning machine (ELM) to develop the 
DML algorithms including RF-RF, RF-ANN, RF-SVM and RF-ELM. The 
traditional single machine learning (SML) approach developed based 
solely on the regression models of RF, ANN, SVM and ELM, and three 
linear merging methods were also adopted in the study for the com
parison purpose. We totally produced twelve precipitation products 
including four of the DML algorithms (i.e., RF-RF, RF-ANN, RF-SVM, and 
RF-ELM), four of the SML algorithms (i.e., RF, ANN, SVM, and ELM), 
three of the linear merging methods (i.e., IEWV, OORA, and OWA), and 
another one product generated via the inverse distance weighting (IDW) 
interpolation algorithm. The gauge-only interpolated product and the 
original SPPs serve as the benchmarks for the evaluations of the added 
value of the merged products. The gauge observation at 697 gauges were 
obtained over the Chinese mainland, of which 70% (i.e., 493 gauges) 
were used for the training of the ML algorithm or for the interpolation, 
while the remaining 30% (i.e., 204 gauges) for the performance evalu
ations. The continuous and categorical metrics including the Kling- 
Gupta efficiency (KGE), the probability of detection (POD), success 
ratio (SR), bias score (BS), and critical success index (CSI) were adopted 
for the performance assessments. 

Results indicate that the DML algorithms achieves a better perfor
mance than the other merging methods, the gauge-only interpolation 
and the original SPPs over the Chinese mainland. The median KGE range 
0.67–0.71 for the merged products of the DML algorithms, while they 

range 0.31–0.54, 0.62, 0.54–0.55, and 0.47–0.65, respectively for the 
original SPPs, the gauge-only interpolated product, the linear merged 
products, and the SML-based products. 

At the subregional scale, the DML-based products could achieve in
crements of the KEG by up to 0.32 (or 249.94%) and 0.22 (or 135.26%), 
6.78 (or more than 10 times), respectively, in comparison to the best 
performed SPP, the interpolated product, and the SML-based products. 
The better performance of DML than SML is mainly due to that the 
former could achieve a higher capability in describing the temporal 
variations of precipitation. Regarding to the detectability of precipita
tion events, the DML-based products also outperform the other products 
with the threshold of 1 mm/day, and perform better than the original 
SPPs regardless of the precipitation thresholds. The increase of the 
median CSI (threshold = 1 mm/day) could be up to 0.19 (or 60.01%), 
0.08 (or 27.56%) and 0.25 (or 378.04%), respectively, in comparison to 
the best performed SPP, the gauge-only interpolated product, and the 
SML-based products over the Chinese mainland. 

Further analyses indicate that the DML-based products could 
perform better than the original SPPs even with a small training dataset 
size. Meanwhile, the added value of the merged product of DML relative 
to the original SPPs shows an upward trend with increasing rain gauge 
densities, while that relative to the gauge-only interpolated product 
exhibits a downward. In addition, the ensemble of the DML algorithms 
proves to have little potential for the further improvements of the pre
cipitation estimates. The comparisons of the ML algorithms demonstrate 
that RF performs best among the four SML methods, and RF-RF and RF- 
ANN perform better than the other two DML algorithms (i.e., RF-SVM 
and RF-ELM). The major contribution of the study lies in two aspects. 
One is that we proposed a novel DML approach to merge multiple SPPs 
and gauge observations, and tested its reliability and validity over the 
Chinese mainland. The other is that, to our best knowledge, this is the 
first attempt to compare the performances of different ML algorithms in 
merging satellite and gauge-based precipitation, especially with the 
consideration of the influence of rain gauge density. 

7. Codes availability 

Codes of the DML and SML algorithms used to merge SPPs and gauge 
observations are freely available at: https://github.com/zhanglingky/M 
LPrecMerg. In addition to precipitation merging purposes, these pro
grams could be easily extended to some other applications such as the 
downscaling of soil moisture and the hydrological predictions. 
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